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Statement of Problem Studied 
 

COMPUTATIONAL MODEL FOR DOMAIN STRUCTURE EVOLUTION IN FERROELECTRICS 
 

Final Report 
 

PI: Chad M. Landis 
Students: Wenyuan Li and Dorinamaria Carka 

Post-doc: Antonios Kontsos 
 

The goal of the proposed research is to develop a sound theoretical framework and 
advanced numerical techniques to simulate the evolution of domain microstructures in 
ferroelectric materials. Ferroelectric ceramics are presently being used in a broad range 
of applications including fuel injectors for high efficiency-low emission diesel engines, 
actuators for active control of helicopter rotor blades and underwater vehicle control 
surfaces, and ultrasonic rotary inchworm motors with high power and torque densities.  
Additionally, ferroelectric thin films are used for data storage in non-volatile 
ferroelectric random access memory (NVFRAM), sensing and actuation in 
microelectromechanical system (MEMS), and in nonlinear optics.  An understanding of 
microstructural evolution and domain dynamics is necessary for further development of 
micro/nano-ferroelectric device technology.  We developed a combined theoretical and 
numerical modeling framework in order to investigate the interactions of domain walls 
with surfaces, grain boundaries, charges, dislocations and other types of defects.  Such 
studies will aid in the understanding of device performance and of material failure 
mechanisms. 
 
 



Summary of Important Results 
 

Theoretical Foundations 
Here we review the fundamental governing phase-field equations.  Standard index 
notation is used with summation implied over repeated indices, the overdot represents 
the first derivative with respect to time, and ,j represents partial differentiation with 
respect to the 

 
x

j
 coordinate direction. 

 
The static equilibrium equations in any arbitrary volume V and its bounding surfaces S 
yield, 
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Where 

  
!

ij
 are the Cartesian components of the Cauchy stress,  bi

the components of a 

body force per unit volume,  ni
the components of a unit vector normal to a surface 

element, and  ti
 the tractions applied to a surface.   Under the assumptions of linear 

kinematics, the strain components 
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 are related to the displacements  ui

 as 
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The electrical quantities of electric field,  Ei

, electric potential,  ! , electric displacement, 

 Di
, volume charge density,  q , and surface charge density,  ! , are governed by the 

quasi-static forms of Maxwell’s equations.  Specifically,  
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within the phase-field modeling approach the free energy will also be required to depend 
on an order parameter and its gradient.  Mathematically, the order parameter is used to 
describe the different variant types, i.e. the spontaneous states that are possible.  For 
the case of ferroelectrics, the physically natural order parameter is the electrical 



polarization  Pi
.  Note that the relationship between electric field, electric displacement 

and polarization in matter is given as  
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Here   !0

 is the permittivity of free space.  Given that the free energy is permitted to 

depend on an order parameter, a set of micro-forces are introduced that are work-
conjugate to the order parameter and its gradient.  The micro-force balance is written 
as, 
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where we have introduced a micro-force tensor 
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density expended across surfaces, an internal micro-force vector   !i
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 is the 

power density expended by the material internally (this micro-force accounts for 
dissipation in the material), and an external micro-force vector   !i

 such that    !i
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i
 is the 

power density expended by external sources.  After the introduction of the Helmholtz 
free energy 
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the following constitutive relationships result. 
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The form of the Helmholtz free energy that is chosen to mimic the behavior of 
ferroelectric single crystals is, 
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The specific values for the constants that are used to model barium titanate are listed in 
the Appendix.  The representation of this free energy contains a few important material 
parameters to be used for the normalization of the results in this paper, including the 
spontaneous polarization   P0

, the spontaneous strain   !0 , the critical electric field for 

homogeneous 180º switching   E0
, the characteristic stress     !0

= E
0
P

0
/ "

0
, and the 

domain wall length scale   l0 . 

 
Numerical Implementation 
Solutions to Equations (1)-(11) can be obtained numerically using the finite element 
method.  The nodal degrees of freedom are chosen to include the mechanical 
displacements, the polarization components, and the electric potential, from which 
strains, polarization gradients, and electric field values are computed within the 
elements.  The following statement of the principal of virtual work is used to implement 
the finite element method. 
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Standard finite element procedures lead to a set of non-linear algebraic equations for the 
nodal degrees of freedom, and the solution is obtained using an iterative Newton-
Raphson method.  Additional details on both the theoretical foundations and the 
numerical implementation of the phase-field model can be found in References [1-3]. 
 
Domain Wall – Dislocation Interactions 
Using these theoretical foundations and numerical methods we have studied the 
interactions of domain walls with defects, including dislocations, crack tips, and free 
surfaces and interfaces in thin films.  Here we present results from applying the phase-
field framework to investigate the interactions between domain walls and arrays of 
dislocations in ferroelectric single crystals.  The non-linear finite element method was 
used to determine equilibrium solutions for the coupled electromechanical interactions 
between a domain wall and a dislocation array. The numerical simulations demonstrate 
the effect of the relative size and orientation of dislocations on 180o and 90o domain wall 
configurations. In addition, results for the pinning strength of dislocations in the case 
that domain walls move due the application of external electric field and shear stress are 
computed.  The presented numerical results were compared with the findings reported 
for charged defects and it is shown that non-charged defects, such as dislocations, can 



also interact strongly with domain walls, and therefore affect the ferroelectric material 
behavior. 

 
Fig. 1.  Polarization distributions in the y-direction near a 180o domain wall interacting 
with an array of dislocations in the [110] direction. The x-scale is normalized with   l0  and 

the polarization values with   P0
. The solid white arrows designate the direction of the 

polarization vector. Periodic boundary conditions are enforced on the lines at half the 
distance    h = 100l

0
 between the dislocations.  For 

   
E

y
/ E

c
> 1  the wall breaks through 

the dislocation. 
 
Figures 1 and 2 illustrate the types of results produced by our simulations.  Upon 
introducing an array of dislocations, Fig. 1 demonstrates the effects of their interactions 
with the 180o domain wall configuration.  Specifically, 

 
P

y
 polarization distributions are 

plotted near dislocations with     b = b[110] and     b = 10!
0
l
0
.  The distance h between the 

dislocations is equal to 100  l0 .  Fig. 1 shows that within the phase-field framework, the 

domain wall is a diffuse zone where polarization changes smoothly between the adjacent 
domain states which are marked by solid white arrows.  In addition, notice that the wall 
is kinked with respect to its original straight configuration.  In fact, the numerical 
results reveal that as the dislocation size increases the kinking becomes more 
pronounced, as expected, indicating stronger interactions between the dislocations and 
the walls.  Domain wall kinking, with a different morphology, has also been reported for 
domain walls interacting with arrays of point charges.  These results demonstrate that 
the existence of non-charged defects, such as dislocations, cause similar electroelastic 
interactions in ferroelectrics.  It is further observed in Fig. 1 that the equilibrium 
position of the domain wall, which was initially placed along the y-axis, lies to the left of 
the arrays of dislocations when no electric field is applied. However, as the applied 
electrical field increases the domain wall shifts to the right until eventually it breaks 
through the array of dislocations.  In Fig. 1,  Ec

 is the critical value of the electrical field 



required to force the domain wall to break though, and for the dislocation size shown it 
is equal to   0.049E

0
.  It is interesting to observe the shape of the kinking and note that 

the wall always bows towards the dislocation sites.  This is a consequence of the details 
of the electrostatic fields near the defects.  Hence, it is apparent that dislocations cause 
electromechanical interactions that change the shape of a 180o wall, and force the wall 
to be offset from the array when no external loads are applied. 
 

 
Fig. 2.  Polarization distributions in the y-direction near a 90o domain wall interacting 
with an array of dislocations in the  [110] direction having Burger’s vectors size 

    b = 10!
0
l
0
 The x-scale is normalized with   l0  and the polarization values with   P0

. The 

solid white arrows designate the direction of the polarization vector. Periodic boundary 
conditions are enforced on the lines at half the distance    h = 100l

0
 between the 

dislocations. For 
   
E

y
/ E

c
> 1  the wall breaks through the dislocation. 

 
Figure 2 shows the effect of applied positive electric field on the configuration of a 90o 
wall interacting with an array of dislocations in the  [110] direction   The electric field 

values in Fig. 2 are normalized with the critical value    Ec
= 0.024E

0
, which causes the 

wall to break through the dislocations for a Burger’s vector size     b = 10!
0
l
0
.  As seen in 

this figure, for no applied electric field the electromechanical interactions between the 
domain wall and the dislocation cause significant kinking of the wall.  Compared to the 
180o wall, the kinking of the 90o wall is more pronounced for the same dislocation size. 
The equilibrium position of the 90o wall is centered the array of dislocations and the 
application of positive electrical field causes the domain wall to shift to the right. When 
the applied field reaches the critical value  Ec

, the results shown in Fig. 2 illustrate the 

equilibrium position just before the wall breaks through the dislocation array. Similar 
results have been obtained for a 90o wall interacting with  [110]-type dislocations.  It is 
further noted that the effects on the domain wall caused by its interaction with the 



array of dislocations in the case that electric field is applied are very similar to the 
corresponding effects caused when only shear stresses are applied. This obervation 
agress with the case of charged defects interacting with domain walls.  Additional 
details of this study can be found in Reference [2]. 
 
Domain Nucleation at a Crack Tip 
Next, results for the growth of a new domain from a crack tip during purely electrical 
loading are reported.  To generate the solution for a final equilibrium domain 
configuration, the domain was nucleated at the crack tip and then allowed to evolve 
with a non-zero polarization viscosity term (i.e. the first β-term in Equation (12)).  The 
loading is applied by first ramping up a uniform charge load on the top and bottom 
surfaces with a charging rate of      ! !"A

/ E
0

= 0.1 to a total charge of     !A
/ P

0
= 0.16  in a 

  60l
0
×  60l

0
 domain with an electrically impermeable crack half of the way through its 

midplane.  The charge was then fixed at     !A
/ P

0
= 0.16  and the domain structure was 

allowed to evolve until the solution was sufficiently close to the equilibrium 
configuration, at which point the polarization viscosity term was set to    ! = 0  to find 
the true equilibrium solution.  Thereafter additional charge is applied to the surface to a 
final value of     !A

/ P
0

= 0.2  and finally the charge is removed from the surface to return 

to the initial uncharged state.  Note that in order to ensure accuracy of the 
computations at least five finite element nodes span any domain wall, and the path-
independence of the J-integral is verified for all cases of equilibrium.  Details of the 
derivation of the J-integral for this phase-field theory can be found in Reference [3].  If 
the mesh is too coarse then mesh-pinning of the domains occurs and significant but 
artificial path-dependence appears at equilibrium in the J-integral.  Figure 3 shows 
contour plots of the y component of the polarization distributions at four different times 
in the domain evolution.  Figure 3 shows that the 90° domain needle is nucleated at the 
crack tip and propagates through the entire domain until it reaches the charged 
boundary. 

 
This non-equilibrium propagation of the domain supports the hypothesis that an 
instability in the equilibrium solution exists at the domain nucleation threshold.  
Additionally, the equilibrium configurations just prior to the domain nucleation with no 
domain (not shown in the figure) and the domain configuration shown in Figure 3b both 
occur at a charge loading level of     !A

/ P
0

= 0.16 , and are sufficiently distinct from one 

another.  This unstable growth of the domain is in contrast to domain switching zones 
predicted using phenomenological constitutive laws.  The explanation for the 
discrepancy is that these phase-field simulations assume a defect-free material.  In such 
a material domain walls do not become pinned and are free to move at vanishingly 
small levels of electromechanical driving force. 



 
 (A) (B) 
 

 
 (C) (D) 
 
Fig. 3.  Contour plots of the y component of the polarization normalized by P0 in the 
vicinity of the crack tip for (A)     !A

/ P
0

= 0.16  during the non-equilibrium evolution of 

the domain, (B)     !A
/ P

0
= 0.16  at the final equilibrium state for the domain, (C) 

equilibrium at     !A
/ P

0
= 0.2 , and (D) equilibrium at     !A

/ P
0

= 0.11 .  Only the upper 

half of the region is displayed.  The x and y distances are normalized distances   x / l
0
 

and   y / l
0
, and the polarization scale is normalized by the spontaneous polarization   P0

. 

 
Next, results for the apparent crack tip energy release rate calculation are presented.  
Figure 4a plots the apparent energy release rate as a function of the applied charge 
loading for the sample.  Note that points A-D on Figure 4a correspond to the domain 
structures illustrated in Figures 3A-3D respectively.  Initially, as the charge is applied 
the energy release rate is negative and approximately quadratic in the applied charge.  
These features of the energy release rate are in accord with linear piezoelectric fracture 
mechanics solutions. Furthermore, prior to the nucleation of the new domain, the 
solutions are carried out at equilibrium and the energy release rate calculation is path-
independent.  At the charge load level of     !A

/ P
0

= 0.16 , nucleation of the new domain 

occurs, and at this point the crack tip energy release rate is approximately 

    G = !3E
0
P

0
l
0
.  The charge is held fixed at this point and as the new domain grows the 

energy release rate increases from     G = !3E
0
P

0
l
0
 to     G = 0.5E

0
P

0
l
0
. 

 

 



          
 (a) (b) 
Fig. 4. (a) The crack tip energy release rate as a function of the applied charge.  Points 
A-D correspond to the domain structures illustrated in Figures 3A-3D respectively.  (b) 
The apparent energy release rate for domain structures A (blue, non-equilibrium) and D 
(red, equilibrium). 
 
Note that the domain evolution at     !A

/ P
0

= 0.16  is a non-equilibrium process during 

which the apparent energy release rate calculation is path-dependent.  Specifically, path-
dependence of the apparent energy release rate calculation for domain structure A is 
plotted as the blue curve in Figure 4b.  Domain structure B is again an equilibrium 
configuration and the energy release rate calculation is path-independent.  After domain 
structure B stabilizes, additional charge is applied and the domain structure is allowed 
to evolve at equilibrium to domain structure C.  During this loading process the energy 
release rate increases in an approximately linear fashion.  Upon reaching structure C the 
applied charge is removed and the domain structures and the energy release rate 
“unloads” along its original loading path to structure B.  At this point the unloading 
path diverges from the original loading path and a hysteresis appears in the energy 
release rate versus applied charge response.  Domain structure D is arrived at during the 
equilibrium unloading process and the energy release rate calculation is path-
independent as shown by the red curve in Figure 4b.  Further unloading of the charge 
causes the domain to vanish and the original negative quadratic branch of the energy 
release rate response is followed. 
 
The most interesting aspect of this simulation is the departure from the results of linear 
piezoelectric fracture mechanics.  Specifically, this calculation is the first that we are 
aware of that predicts that the crack tip energy release rate can be positive under purely 
electrical loading for impermeable crack face boundary conditions.  Furthermore, the 
calculation shows that an existing domain structure near the crack tip can cause a 
qualitatively different behavior for the energy release rate, positive and increasing with 
applied charge, from what is expected in linear piezoelectricity, negative and decreasing 
with applied charge.  We do note that large scale switching does occur in this simulation 
and so a direct comparison to linear piezoelectric fracture mechanics concepts is 



tenuous.  However, these simulations demonstrate the effects that near tip domain 
structures can have on the fracture process in ferroelectric crystals.  Specifically, the 
negative contribution of the energy release rate from applied electric fields may in fact 
be positive for certain domain structures near crack tips.  Hence, the modeling of crack 
tip domain structures and large scale domain switching behavior in fracture specimens 
may be a key to understanding the plethora of seemingly disparate experimental 
observations on electromechanical fracture of ferroelectrics. 
 
Infinite Boundary Conditions for Crack Problems 
During our studies of the switching zones near crack tips we found the need to develop 
infinite boundary conditions for two-dimensional crack being loaded by a K-field.  To 
accomplish this we formulated a coupled analytic/finite-element method for two-
dimensional crack problems.  With the method two classes of problems can be studied.  
The first considers problems where non-linear constitutive processes occur in a region 
near the crack tip and the remotely applied loading can be characterized by the linear 
elastic K-field and perhaps the T-stress.  In this case, the finite-element method is 
applied in a circular region around the crack tip where non-linear constitutive response 
is occurring, and stiffness contributions associated with a numerically implemented 
Dirichlet-to-Neumann map are imposed on the circular boundary to account for the 
large surrounding elastic domain and the remote applied loading.  This is the class of 
problems relevant to the study of switching zones.  The second class of problems 
considers entirely linear elastic domains with irregular external boundaries and/or 
complex applied loadings.  Here, the discrete Dirichlet-to-Neumann map is used to 
represent a circular region surrounding the crack tip, and finite-elements are used for 
the external region.  In this case the mixed mode stress intensity factors and the T-
stress are retrieved from the map.  This application of the method results in a highly 
accurate set of “crack-tip” elements that can be used to decompose the stress intensity 
factors from the T-stress in linear elastic (or linear piezoelectric) fracture mechanics 
problems.  Full details of the method can be found in Reference [4]. 
 
Path-Dependence of the J-Integral 
While this study seems somewhat tangential to the originally proposed work, it arose 
from our interests in how the ferroelastic switching zones near cracks in ferroelectrics 
affect the crack tip energy release rate.  The section just prior to this one describes our 
work on the numerical implementation of the true small-scale yielding/switching 
boundary conditions for such crack problems.  Our first test of the method was simply 
to look at the path-dependence of the J-integral in a standard elastic-plastic material 
governed by J2-flow plasticity theory.  The existing body of decades old literature on the 
topic suggested that the J-integral should be nearly but not exactly path-independent.  
What we found in this study was interestingly different and is shown in Figure 5. 
 



 
Fig. 5.  Values for the J-integral normalized by its far-field value for a circular contour 
of radius r computed by the domain integral method near a crack tip under mode I 
loading in an elastic-perfectly-plastic material with    ! = 0.3 .  The markers correspond to 
different points along the load history and different sizes of the plastic zone relative to 
the minimum radial dimension of the elements surrounding the crack tip.  Rp is the 
approximate plastic zone size and   hmin

r  is the minimum element size near the crack tip. 

 
The results shown in Figure 5 indicate that there is significant, ~20%, path-dependence 
of the J-integral as the radius of the integration path is reduced.  Additional details of 
this study can be found in Reference [5].  From an informal poll we determined that 
several experts in the area of elastic-plastic fracture mechanics found this results to be 
surprising.  Hence, this work was able to fill a gap in the existing literature on the path-
dependence of J in elastic-plastic materials.  Continuing work in progress on J in 
ferroelastic materials has shown that J can actually be elevated at the crack tip due to 
ferroelastic switching. 
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Appendix 
Equation (11) presented the general form of the Helmholtz free energy used in this 
paper.  For a coordinate system aligned with the 〈100〉 directions, the specific form used 
to fit the dielectric, piezoelectric and elastic properties of ferroelectric single crystals 
that undergo a cubic to tetragonal phase transformation is given in Equation (A1).  
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In the equation above    !0

= 8.854!10"12 Vm/C , and 
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where     !0

= E
0
P

0
/ "

0
= 692!106  N/m2 .  In addition,    P0

= 0.26 C/m2 ,    !0 = 0.0082  and 

   E0
= 2.182!107  V/m  correspond to properties of monodomain single crystal barium 

titanate at room temperature.  

The parameter   a0
 appearing in Eq. (A1) determines the domain wall thickness.  If 

   a0
= 1!10"10 V #m3 / C  then    l0 = 1 nm , and therefore the 180° domain wall has 

thickness equal to 2 nm which is in general agreement with experimental observations. 
 


